Can metamorphic reactions proceed faster than bulk strain ?

نویسنده

  • Donald J. DePaolo
چکیده

Available constraints on metamorphic reaction rates derived from the study of natural systems are similar to, or slightly lower than, the bulk strain rates measured in the same rocks. Here, we explore whether this apparent relationship is merely coincidence or due to a more fundamental mechanistic link between reaction and strain. Grain boundary migration accommodated dislocation creep (GBMDC) or grain boundary diffusion creep (GBDC) (i.e. pressure solution), both of which involve dissolution-precipitation as we define it, will occur simultaneously with mineral reactions involving dissolution-precipitation in the presence of a non-zero deviatoric stress. The exact relationships between reaction and strain are different depending on whether GBMDC or GBDC is controlling strain, but the mechanistic link exists in both cases. We present theoretical arguments which show that bulk strain by GBMDC or GBDC, which may additionally be accommodated by processes not involving dissolutionprecipitation, such as dislocation glide and climb or grain boundary sliding, should in most cases be somewhat faster than the bulk reaction rates as observed. With few exceptions, for natural metamorphic systems undergoing plastic deformation, strain rates provide an upper limit for bulk reaction rates occurring simultaneously in the same rocks. The data suggest that mineral reaction rates may typically be within one order of magnitude of the strain rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between very low-grade metamorphism and tectonic deformation: examples from the southern Central Iberian Zone (Iberian Massif,

We have studied the syn-kinematic very low-grade metamorphism in a polyphase Variscan deformed region using X-ray diffraction techniques. Two phases of regional metamorphism are related to their respective episodes of penetrative deformation in the southern Central Iberian Zone. The data obtained suggest that the rocks did not reach metamorphic equilibrium, but strain favoured the progress of m...

متن کامل

Factors Affecting the Thickness of Thermal Aureoles

Intrusions of magma induce thermal aureoles in the country rock. Analytical solutions predict that the thickness of an aureole is proportional to the thickness of the intrusion. However, in the field, thermal aureoles are often significantly thinner or wider than predicted by simple thermal models. Numerical models show that thermal aureoles are wider if the heat transfer in the magma is faster...

متن کامل

Protein Modification by Strain-Promoted Alkyne–Nitrone Cycloaddition**

The bioorthogonal chemical reporter strategy is emerging as a versatile method for the labeling of biomolecules, such as nucleic acids, lipids, carbohydrates, and proteins. In this approach, an abiotic chemical functionality (reporter) is incorporated into a target biomolecule and can then react with a complementary bioorthogonal functional group linked to one of a diverse set of probes. The az...

متن کامل

Implications of replacement for reaction–transport modeling

Mineral replacement in rocks consists of growth of guest mineral and dissolution of host. The two reactions are coupled by the grain–grain stress generated by growth of the guest grain in a rigid or very viscous rock in which it has initially no available room. This stress self-adjusts to make the volumetric rates of guest growth and host dissolution equal to each other, which accounts for the ...

متن کامل

Strain-promoted cycloadditions of cyclic nitrones with cyclooctynes for labeling human cancer cells.

Strain-promoted cycloadditions of cyclic nitrones with cyclooctynes proceed with rate constants up to 3.38 ± 0.31 M(-1) s(-1) in CD(3)CN, or 59 times faster than the analogous reaction of azides. This highly specific modular labeling strategy can be applied for direct labeling of proteins and for live cell imaging of cancer cells.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004